BIOMEDICAL ENGINEERING, B.S.

The BS Biomedical Engineering program is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org, under the General Criteria and the Bioengineering and Biomedical and Similarly Named Engineering Programs Criteria.

Learning Outcomes
1. Ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
2. Ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
3. Ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgement to draw conclusions.
4. Ability to acquire and apply new knowledge as needed, using appropriate learning strategies.
5. Ability to communicate effectively with a range of audiences.
6. Ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
7. Ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.

Academic Standards

Program GPA
Program GPA requirement policies are described in the Molinaroli College of Engineering and Computing section of this bulletin. For the purpose of these policies, the following courses are used to determine the Program GPA for the Biomedical Engineering B.S. program: all Biomedical Engineering Major courses, all lower division courses, all courses used to satisfy a Biomedical Engineering Elective, and all courses used to satisfy an Engineering Elective.

Admissions

Entrance Requirements
Admission requirements and processes for freshman, transfer students, and former students seeking readmission are managed by the Office of Undergraduate Admissions (http://sc.edu/about/offices_and_divisions/undergraduate_admissions/).

Transfer applicants from regionally accredited colleges and universities must have a cumulative 2.75 GPA on a 4.00 scale to enter the College of Engineering and Computing. In addition, transfer applicants for the Aerospace Engineering, Biomedical Engineering, Chemical Engineering, Civil Engineering, Computer Engineering, Electrical Engineering, or Mechanical Engineering majors must also have completed a four semester-hour calculus course equivalent to MATH 141 with a grade of “C” or better.

Current University of South Carolina students who wish to enter the College of Engineering and Computing, and former students seeking readmission, must have an institutional GPA of 2.50 or better on at least 15 hours earned at USC. In addition, such applicants for the Aerospace Engineering, Biomedical Engineering, Chemical Engineering, Civil Engineering, Computer Engineering, Electrical Engineering, or Mechanical Engineering majors must also have completed a four semester-hour calculus course equivalent to MATH 141 with a grade of “C” or better.

Degree Requirements (122-136 hours)

See College of Engineering and Computing (https://academicbulletins.sc.edu/undergraduate/engineering-computing/) for progression requirements and special academic opportunities.

Program of Study

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Carolina Core Requirements</td>
<td>34-46</td>
</tr>
<tr>
<td>2. College Requirements</td>
<td>0</td>
</tr>
<tr>
<td>3. Program Requirements</td>
<td>52-54</td>
</tr>
<tr>
<td>4. Major Requirements</td>
<td>36</td>
</tr>
</tbody>
</table>

Founding Documents Requirement

All undergraduate students must take a 3-credit course or its equivalent with a passing grade in the subject areas of History, Political Science, or African American Studies that covers the founding documents including the United States Constitution, the Declaration of Independence, the Emancipation Proclamation and one or more documents that are foundational to the African American Freedom struggle, and a minimum of five essays from the Federalist papers. This course may count as a requirement in any part of the program of study including the Carolina Core, the major, minor or cognate, or as a general elective. Courses that meet this requirement are listed here (https://academicbulletins.sc.edu/undergraduate/founding-document-courses/).

1. Carolina Core Requirements (34-46 hours)

CMW – Effective, Engaged, and Persuasive Communication: Written (6 hours)
- ENGL 101 must be passed with a grade of C or higher
- ENGL 102

ARP – Analytical Reasoning and Problem Solving (8 hours)
 must be passed with a grade of C or higher
- MATH 141
- MATH 142

SCI – Scientific Literacy (8 hours)
 must be passed with a grade of C or higher
- BIOL 101
- BIOL 101L
- CHEM 111
- CHEM 111L

MATH 141
MATH 142

SCI – Scientific Literacy (8 hours)
 must be passed with a grade of C or higher
- BIOL 101
- BIOL 101L
- CHEM 111
- CHEM 111L
GFL – Global Citizenship and Multicultural Understanding: Foreign Language (0-6 hours)
Score two or better on foreign language placement test; or complete the 109 and 110 courses in FREN, GERM, LATN or SPAN; or complete the 121 course in another foreign language.
• CC-GFL courses (https://academicbulletins.sc.edu/undergraduate/carolina-core-courses/)

GHS – Global Citizenship and Multicultural Understanding: Historical Thinking (3 hours)
• any CC-GHS course (https://academicbulletins.sc.edu/undergraduate/carolina-core-courses/)

GSS – Global Citizenship and Multicultural Understanding: Social Sciences (3 hours)
• any CC-GSS course (https://academicbulletins.sc.edu/undergraduate/carolina-core-courses/)

AIU – Aesthetic and Interpretive Understanding (3 hours)
• any CC-AIU course (https://academicbulletins.sc.edu/undergraduate/carolina-core-courses/)

CMS – Effective, Engaged, and Persuasive Communication: Spoken Component 1 (0-3 hours)
• any overlay or stand-alone CC-CMS course (https://academicbulletins.sc.edu/undergraduate/carolina-core-courses/)

INF – Information Literacy 1 (0-3 hours)
• any overlay or stand-alone CC-INF course (https://academicbulletins.sc.edu/undergraduate/carolina-core-courses/)

VSR – Values, Ethics, and Social Responsibility 1 (0-3 hours)
• any overlay or stand-alone CC-VSR course (https://academicbulletins.sc.edu/undergraduate/carolina-core-courses/)

1 Carolina Core Stand Alone or Overlay Eligible Requirements — Overlay-approved courses offer students the option of meeting two Carolina Core components in a single course. A maximum of two overlays is allowed. The total Carolina Core credit hours for this program must add up to a minimum of 34 hours.

2. College Requirements (0 hours)
No college-required courses for this program.

3. Program Requirements (52-54 hours)
Supporting Courses (52-54 hours)
Foundational Courses (18 hours)
Complete all of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 112</td>
<td>General Chemistry II (must be passed with a grade of C or higher)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 112L</td>
<td>General Chemistry II Lab (must be passed with a grade of C or higher)</td>
<td>1</td>
</tr>
</tbody>
</table>

Supporting Courses (52-54 hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 102</td>
<td>Biological Principles II</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 102L</td>
<td>Biological Principles II Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 250</td>
<td>Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 250L</td>
<td>Microbiology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 270</td>
<td>Introduction to Environmental Biology</td>
<td>3</td>
</tr>
</tbody>
</table>

Program Electives (3 hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMEN 342</td>
<td>Infectious Disease & Immunology for Biomedical Engineers</td>
<td>3</td>
</tr>
<tr>
<td>BMEN 346</td>
<td>Medical Microbiology for Biomedical Engineers</td>
<td>3</td>
</tr>
<tr>
<td>BMEN 389</td>
<td>Special Topics in Biomedical Engineering for Undergraduates</td>
<td>1-3</td>
</tr>
<tr>
<td>BMEN 392</td>
<td>Fundamentals of Biochemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BMEN 499</td>
<td>Independent Research</td>
<td>1-3</td>
</tr>
<tr>
<td>BMEN 532</td>
<td>Micro/nanofluidics and Lab-on-a-Chip</td>
<td>3</td>
</tr>
<tr>
<td>BMEN 537</td>
<td>Bio Nano/Micro Electro-Mechanical Systems</td>
<td>3</td>
</tr>
<tr>
<td>BMEN 546</td>
<td>Delivery of Bioactive Agents</td>
<td>3</td>
</tr>
<tr>
<td>BMEN 547</td>
<td>Immunoengineering</td>
<td>3</td>
</tr>
<tr>
<td>BMEN 548</td>
<td>Cardiovascular System: From Development to Disease</td>
<td>3</td>
</tr>
<tr>
<td>BMEN 565</td>
<td>Advanced Biomechanics</td>
<td>3</td>
</tr>
<tr>
<td>BMEN 572</td>
<td>Tissue Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BMEN 575</td>
<td>Engineering of Soft Materials</td>
<td>3</td>
</tr>
<tr>
<td>BMEN 589</td>
<td>Special Topics in Biomedical Engineering</td>
<td>1-3</td>
</tr>
<tr>
<td>ECHE 430</td>
<td>Chemical Engineering Kinetics</td>
<td>3</td>
</tr>
<tr>
<td>EMCH 580</td>
<td>Mechanics of Solid Biomaterials</td>
<td>3</td>
</tr>
<tr>
<td>EXSC 335</td>
<td>Biomechanics of Human Movement</td>
<td>3</td>
</tr>
</tbody>
</table>

Biomedical Engineering Electives (12 hours)
Students must take 12 credit hours of Biomedical Engineering electives. Of these 12 credit hours, at most 3 credit hours may come from BMEN 499. Undergraduate courses that may be used to satisfy this requirement are listed below. In addition, BMEN courses numbered 700 and above may be used to satisfy this requirement, provided the student is admitted to an Accelerated Bachelor’s/Graduate Program.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 333</td>
<td>Organic Chemistry I (must be passed with a grade of C or higher)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 331L or CHEM 333L</td>
<td>Essentials of Organic Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>MATH 242</td>
<td>Elementary Differential Equations (must be passed with a grade of C or higher)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 211</td>
<td>Essentials of Physics I (must be passed with a grade of C or higher)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 211L</td>
<td>Essentials of Physics I Lab (must be passed with a grade of C or higher)</td>
<td>1</td>
</tr>
<tr>
<td>STAT 509</td>
<td>Statistics for Engineers</td>
<td>3</td>
</tr>
</tbody>
</table>
BIOL 270L Introduction to Environmental Biology Laboratory 1
BIOL 301 Ecology and Evolution 3
BIOL 302L Cell and Molecular Biology Laboratory 1
BIOL 303 Fundamental Genetics 3
BIOL 415 Comparative Vertebrate Anatomy 4
BIOL 460 Advanced Human Physiology 3
BIOL 505 Developmental Biology 3
BIOL 530 Histology 4
BIOL 531 Parasitology 4
or ENHS 661 Parasitology 3
or EPID 661 Parasitology 3
BIOL 534 Animal Behavior 3
BIOL 553 Genomics 3
BIOL 610 Hallmarks of Cancer 3
BIOL 612 Virology - Classical and Emerging Concepts 3
BIOL 620 Immunobiology 3
BIOL 635 Neurophysiology 4
BIOL 653 Bioinformatics 3
BIOL 655 Biotechnology 3
BIOL 656 Experimental Biotechnology 4
BIOL 662 Signal Transduction and Pathogenesis 3
BIOL 665 Human Molecular Genetics 3
BIOL 667 Molecular and Genetic Mechanisms of Disease Pathogenesis 3
BIOL 690 Ultramicroscopy 3
CHEM 321 Quantitative Analysis 3
or CHEM 322 Analytical Chemistry 3
CHEM 321L Quantitative Analysis Laboratory 1
or CHEM 322L Analytical Chemistry Laboratory 1
CHEM 334 Organic Chemistry II 3
CHEM 332L Essentials of Organic Chemistry Laboratory II 1
CHEM 340 Elementary Biophysical Chemistry 3
CHEM 541 Physical Chemistry 3
CHEM 541L Physical Chemistry Laboratory 2
CHEM 542 Physical Chemistry 3
CHEM 545 Physical Biochemistry 3
CHEM 550 Biochemistry 3
or BIOL 541 Biochemistry 3
CHEM 550L Biochemistry Laboratory 1
or BIOL 541L Biochemistry Laboratory 1
CSCE 145 Algorithmic Design I 4
EMCH 111 Introduction to Computer-Aided Design 3
EXSC 330 Exercise Physiology 3
EXSC 562 Impairments of the Human Motor System 3
MATH 344 Applied Linear Algebra 3
or MATH 526 Numerical Linear Algebra 3
MATH 374 Discrete Structures 3
MATH 520 Ordinary Differential Equations 3
MATH 524 Nonlinear Optimization 3
MATH 544 Linear Algebra 3
MATH 546 Algebraic Structures I 3
MATH 547 Algebraic Structures II 3
MATH 550 Vector Analysis 3
MATH 552 Applied Complex Variables 3
MGMT 371 Principles of Management 3
PHYS 212 Essentials of Physics II 3
PHYS 212L Essentials of Physics II Lab 1
PHYS 515 Mathematical Physics I 3
PHYS 516 Mathematical Physics II 3
PHYS 517 Computational Physics 3
STAT 516 Statistical Methods II 3
STAT 518 Nonparametric Statistical Methods 3
STAT 519 Sampling 3
STAT 520 Forecasting and Time Series 3
or MGSC 520 Forecasting and Time Series 3
STAT 523 Financial Mathematics II 3
STAT 525 Statistical Quality Control 3
or MGSC 525 Statistical Quality Control 3
STAT 528 Environmental Statistics 3
STAT 530 Applied Multivariate Statistics and Data Mining 3
STAT 582 Bayesian Networks and Decision Graphs 3
or CSCE 582 Bayesian Networks and Decision Graphs 3
UNIV 101 The Student in the University 3

Lower Division Engineering (19-21 hours)
Complete all of the following:

Course Title Credits
BMEN 101 Introduction to Biomedical Engineering 1-3
BMEN 102 Introduction to Engineering 1-3
BMEN 212 Fundamentals of Biomedical Systems (must be passed with a grade of C or higher) 3
BMEN 240 Cellular and Molecular Biology with Engineering Applications (must be passed with a grade of C or higher) 4
BMEN 271 Introduction to Biomaterials 3
BMEN 340 Biochemistry with Engineering Applications 4
BMEN 345 Human Anatomy and Physiology for Biomedical Engineers 4

Total Credit Hours 19-21

4. Major Requirements (36 hours)

Major Courses (36 hours)

Course Title Credits
BMEN 263 Introduction to Biomechanics (must be passed with a grade of C or higher) 3
BMEN 290 Thermodynamics of Biomolecular Systems (must be passed with a grade of C or higher) 3
BMEN 302 Professional Development and Ethics in Biomedical Engineering 2
BMEN 321 Biomedical Instrumentation 3
BMEN 354 Biotechnology 3
BMEN 363 Biomedical Engineering Laboratory I 2
BMEN 382 Biomedical Engineering Laboratory II 2
BMEN 391 Kinetics in Biomolecular Systems 3
Major Map

A major map is a layout of required courses in a given program of study, including critical courses and suggested course sequences to ensure a clear path to graduation.

Major maps are only a suggested or recommended sequence of courses required in a program of study. Please contact your academic advisor for assistance in the application of specific coursework to a program of study and course selection and planning for upcoming semesters.

Biomedical Engineering, B.S.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMEN 411</td>
<td>Modeling and Simulation of Biomedical Systems</td>
<td>3</td>
</tr>
<tr>
<td>BMEN 420</td>
<td>Control Systems in Biomedical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BMEN 427</td>
<td>Senior Biomedical Engineering Design I</td>
<td>3</td>
</tr>
<tr>
<td>BMEN 428</td>
<td>Senior Biomedical Engineering Design II</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours 36